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Abstract It is argued that whether the use of the Born–

Oppenheimer approximation is thought to require consid-

eration of the potential energy surface in the context of a

full Coulomb Schrödinger Hamiltonian in which transla-

tional and rotational motions are explicitly considered, and

then it is inconsistent to treat that surface without allowing

for the rotational motion of the molecule. Some of the

implications of this upon the calculation of partition

functions are considered.
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1 Introduction

In an previous presentation [1], it was argued that because

the potential calculated from the standard clamped-nuclei

electronic Hamiltonian is usually taken to be rotationally

and translationally invariant, and then any attempt to

place this potential in the context of the full Schrödinger

Coulomb Hamiltonian must be made with this Hamiltonian

expressed in terms of translationally and rotationally

invariant coordinates with the electronic coordinates

explicit. Ways in which such a Hamiltonian might be

constructed were discussed in the study by [2] and in that

by [3]. In what follows the account given in [3] will be

used.

2 Treating rotational and translational motion

The detailed derivation of the equations used in the fol-

lowing summary can be found in the study by [3] but in

what follows the special case is chosen in which the

N translationally invariant electronic coordinates te have

their origin at the center-of-nuclear mass. This choice is

most likely to be effective in a region close to the equi-

librium molecular geometry and is unlikely to be useful in

describing dissociation. The translationally invariant

nuclear coordinates tn may be chosen in any convenient

way provided that only the original nuclear variables

are involved. Diatomic species are not included in the

following discussion.

The nuclear cartesian coordinates tn are considered

related to a set zn by

tn ¼ Czn ð1Þ

so the matrix C may be thought of as a direction cosine

matrix, relating the laboratory frame to the frame fixed in

the body.

The electronic variables fixed in the body are then

defined in terms of the above-mentioned transformation by

zi ¼ CT te
i i ¼ 1; 2; . . .;N ð2Þ

in which the superscript on the electronic variables fixed in

the body has been dropped. Equations (1) and (2) define in

the frame fixed in the body by means of C, the cartesian

form of the variables. Thus, any orthogonal transformation

of the translationally invariant coordinates (including

inversion) leaves them, by definition, unchanged.
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The internal coordinates qk must be invariant to any

orthogonal transformation of the translationally invariant

coordinates and so must be expressible in terms of

scalar products of the translationally invariant nuclear

coordinates.

The translationally invariant angular momentum opera-

tor becomes

LðtÞ ¼ � �h

i
jCjCD

o

o/
¼ �jCjCLð/Þ ð3Þ

where |C| is either plus or minus one according to whether

C corresponds to a proper rotation or to an improper

rotation.

There is at this stage an element of choice for the def-

inition of the angular momentum in the frame fixed in the

body, and in Eq. (3), it can be seen that we have chosen

Lð/Þ ¼ �h

i
D

o

o/
ð4Þ

Often, indeed perhaps more usually, the negative of this

operator is chosen. However, a little algebra shows that

in either case L2ð/Þ � L2ðtÞ and that Lzð/Þ and LzðtÞ
commute with L2 so one can find a complete set of angular

momentum eigenfunctions |JMk[ such that

L2ðtÞjJMk [ ¼ L2ð/ÞjJMk [ ¼ �h2JðJ þ 1ÞjJMk [
LzðtÞjJMk [ ¼ �hMjJMk [

Lzð/ÞjJMk [ ¼ �hkjJMk [

ð5Þ

The functions |JMk[ are often called symmetric-top

eigenfunctions.

The complete kinetic energy operator may be written as

KðzÞ þ Kðq; zÞ þ Kð/; q; zÞ ð6Þ

Where

KðzÞ ¼ � �h2

2m

XN

i¼1

r2ðziÞ �
�h2

2M

XN

i;j¼1

r~ðziÞ:r~ðzjÞ ð7Þ

The part of the Hamiltonian involving nuclear motion is

Kð/; q; zÞ ¼ 1

2

X

ab

jabLaLb þ �h
X

a

kaLa

 !
ð8Þ

and

Kðq; zÞ ¼ KA þ
�h2

2

X

ab

jablalb þ
X

a

kala

 !
ð9Þ

where

KA ¼
�h2

2

X3A�6

k;l¼1

gkl
o2

oqkoql
þ
X3A�6

k¼1

hk
o

oqk

 !
ð10Þ

In the above, m is the electronic mass and M is the total

nuclear mass. Detailed definition of the various coefficients

of the derivative terms in the Hamiltonian can be found in

the study by [3]. For the moment, it is sufficient to note that

j depends upon the moments of inertia I of the rotating

body. It is shown in [3] that

j ¼ I�1 þ sT g�1s ð11Þ

where the elements of g are the gkl in Eq. (10) and the

elements of s are part of the definition of ka. This last

involves a part dependent upon derivatives of the qk and a

multiplicative term ma/i while

ka ¼ ka þ 2ðjlÞa
where l is the electronic angular momentum operator.

The potential energy operator is

Vðq; zÞ ¼ e2

8p�0

X0
N

i;j¼1

1

jzj � zij
þ e2

8p�0

X0
A

i;j¼1

ZiZj

rijðznÞ

� e2

4p�0

XA

i¼1

XN

j¼1

Zi

r0ijðzn; zeÞ

or

Vðq; zÞ ¼ VeðzÞ þ VnðqÞ � Venðq; zÞ ð12Þ

Here, r0ij is the electron-nucleus distance.

Although both Lzð/Þ and LzðtÞ commute with L2, only

LzðtÞ and L2 commute with the Hamiltonian, so that the

eigenfunctions WJ;Mðtn; teÞ written in the form

WJ;Mðtn; teÞ ! WJ;Mð/; q; zÞ ¼
XþJ

k¼�J

UJ
kðq; zÞjJMk [

ð13Þ

where the |JMk[ are angular momentum eigenfunctions

and where the internal coordinate function on the right side

cannot depend on M because, in the absence of a field, the

energy of the system does not depend on M. Eigenfunctions

of this kind form a basis for irreducible representations of

SO(3), as required.

It is argued in [1] that the ordinary clamped-nuclei elec-

tronic Hamiltonian should be mapped on to the Hamiltonian

formed from the sum of Eq. (7) and the potential Eq. (12) but

with the coordinates q taken at the fixed values arising from

the geometry chosen when clamping the nuclei.

A linear transformation of the laboratory coordinates

leads to a translationally invariant set of coordinates so the

Jacobian for such a transformation is simply a constant.

Thus, the spectrum of the resulting Hamiltonian remains

invariant, no matter what choice of translationally invariant

coordinates is made. However, the transformation to body-

fixed coordinates is to a manifold and not a Cartesian space

and so has a Jacobian that vanishes in some region of
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space. In fact it can be shown (see the discussion in [3])

that at least two choices of body-fixed coordinates must be

made in order to cover the Cartesian space defined by

translationally invariant coordinates and, furthermore, in

any one choice, a single choice of orthogonally invariant

internal coordinates is not sufficient to describe unambig-

uously all possible nuclear geometries. It is thus to be

expected that a given body-fixed Hamiltonian will have a

spectrum that describes only part of the full spectrum.

3 Removing rotational motion in the frame fixed

in the body

One can eliminate angular motion from the problem by

allowing the operator to work on the function and multi-

plying from the left by its complex conjugate and inte-

grating out over the angular variables. This yields an

effective operator within any (J, M, k) rotation–reflection

manifold that depends only on the internal coordinates.

To remove the rotational motion, the Hamiltonian is

written as

KI þ KR þ V ð14Þ

in which the first term, KI , consists of the first two terms

and KR is the third term in Eq. (6). V is Eq. (12).

In what follows explicit allowance for the diagonal

requirement on J and M will be assumed and the indices

suppressed to save writing. Similarly, the fact that the

integration implied is over / only will be left implicit.

The matrix elements of this Hamiltonian with respect to

the angular variables are

\JMk0 j KI þ V þ KR j JMk [

¼ �h2

4
ðbþ2CþJkþ1 CþJkdk0kþ2 þ b�2C�Jk�1C�Jkdk0k�2Þ

þ �h2

4
ðCþJkðbþ1ð2k þ 1Þ þ kþÞdk0kþ1 þ C�Jkðb�1ð2k � 1Þ

þ k�Þdk0k�1Þ þ
�h2

2
ððJðJ þ 1Þ � k2Þbþ b0k2 þ k0kÞdk0k

þ ðKI þ VÞdk0k ð15Þ

In this expression

b�2 ¼ ðjxx � jyyÞ=2� jxy=i

b�1 ¼ jxz � jyz=i

b ¼ ðjxx þ jyyÞ=2 b0 ¼ jzz

ð16Þ

and in terms of the ka; k0 is kz and the k� are

k� ¼ ðkx � ky=iÞ ð17Þ

The apparently odd positioning of the complex unit as

1/i when i might have been expected is because the

standard commutation conditions have been chosen for the

internal angular momentum components.

Thus, within any rotational manifold, it is the eigenso-

lutions of the effective Hamiltonian given by Eq. (15)

which are invariant to orthogonal transformations, and it is

these functions that will be used to consider the separation

of electronic and nuclear variables.

4 Constructing effective operators for nuclear motion

in a product function basis

An approximate solution to the effective Hamiltonian is

expressed in terms of a sum of products of the form

UJ
kpðqÞwpðq; zÞ ð18Þ

where p labels the electronic state and the sum is over p.

The explicit variables in which wp is imagined expressed

are electron nucleus separation variables. Technically, this

means that wp is an implicit function of the q and the z. But

it is probably clearer to use the terminology that is

appropriate when a fixed value is chosen for q and say that

the explicit variables are the z and that the q are parameters

in the function. It should be stressed that this separation is

simply a computational strategy because the system of

differential equations implied by the Hamiltonian is obvi-

ously stiff because of the very great differences in size

between the mass terms that coefficient the Laplacians.

In this approach, the approximating functions including

angular momentum are taken to be of the form.

wpðq; zÞ
XþJ

k¼�J

UJ
kpðqÞjJMk [ ð19Þ

If we consider the effective internal motion operator

working on a product function, we get

UJ
kpðqÞðKðzÞ þ VeðzÞ � Vneðq; zÞ þ VnðqÞÞwpðq; zÞ
þ Kðq; zÞUJ

kpðqÞwpðq; zÞ ð20Þ

As explained before, this equation is, within any rotational

manifold, diagonal in J; M but this will be left implicit in

future. The nuclear function has been moved through the

expression as far as is possible, but the electronic function

may not be moved at all, since it depends on all the vari-

ables in the problem at this stage.

In the standard approach, it is stipulated that the set of

known functions, wp(q,z), should be chosen as exact

solutions of the electronic problem

KðzÞ þ VeðzÞ � Vneðq; zÞð Þwpðq; zÞ
� Helecðq; zÞwpðq; zÞ ¼ EpðqÞwpðq; zÞ ð21Þ

However, as argued in [1], the operator in this equation is

not self-adjoint and so has no proper eigenfunctions.
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However, if the nuclei are clamped, then the equation does

have proper eigenfunctions and a well-formed electronic

Hamiltonian can be defined over these fixed points using

the theory of fiber-bundles. At each and every point in the

nuclear position space, these eigenfunctions may be cho-

sen as an orthogonal set each with eigenvalue Ep(a) where

the choice of fixed nuclear geometry a, yields a fixed

value of the internal coordinates. The theory of fiber-

bundles may be used to define a potential Vp(q) arising

from the properly defined electronic Hamiltonian plus the

classical nuclear repulsion. The potential could in princi-

ple be calculated at any point, but in practice this potential

is known only at a finite number fixed values of the

nuclear geometry. These may be chosen in a manner

required in advance of the calculation but often the chosen

points are fitted to a functional form. Ideally, any fit

should be checked to show that the value of the potential

at any point not used in the fit is close enough to the

eigenvalue computed at that point. The whole internal

coordinate space does not admit a global potential because

the internal coordinates are built on a manifold which is

not globally Cartesian.

A set of electronic functions covering all the internal

coordinate space arising from a properly defined electronic

motion problem can be postulated. These functions may

then be imagined as wp(q, z) then Eq. (20) may be worked

through remembering that the product rule must be used

when considering the effect of derivative operators with

respect to the qk because both terms in the product Eq. (18)

depend on the q variables. The effective nuclear motion

Hamiltonian, depending only on the q, can be obtained by

multiplying the resulting expression from the left by

wp0 ðq; zÞ and integrating over the z. Doing this yields an

equation with coupling between different electronic states,

labeled by p. The effective internal motion operator is then:

\JMk0p0 j H j JMkp [ z

¼ �h2

4
ðbþ2CþJkþ1 CþJkdk0kþ2 þ b�2C�Jk�1C�Jkdk0k�2Þdp0p

þ �h2

4
CþJkðbþ1ð2k þ 1Þ þ kþÞdk0kþ1

�

þ C�Jkðb�1ð2k � 1Þ þ k�Þdk0k�1

�
dp0p

þ �h2

4
CþJkc

þ
p0pðqÞdk0kþ1 þ C�Jkc

�
p0pðqÞdk0k�1

� �

þ �h2

2
ðJðJ þ 1Þ � k2Þbþ b0k2 þ k0k
� �

dk0kdp0p

þ �h2

2
dk0kkc0

p0pðqÞ

þ dp0pdk0k KA þ EpðqÞ þ VnðqÞ
� �

þ dk0kcp0pðqÞ ð22Þ

The definitions of the c terms can again be found in [3]

but it is sufficient here to note that they are all simply

multiplicative functions of the internal coordinates and can

couple different electronic states.

If it were the case that a single electronic state domi-

nated in the energy range of interest and that within that

state for a given J only a single value of k dominated then,

to a first approximation the Hamiltonian

KA þ EpðqÞ þ VnðqÞ
� �

would determine the vibrational motion, and since the

b and b0 values are simply multipliers, the Hamiltonian

�h2

2
ðJðJ þ 1Þ � k2Þbþ b0k2
� �

would determine the rotational motion if any contribution

from k0 can be ignored. This separation forms the basis for

the standard description of vibration–rotation motion in

which the vibrational levels are treated as primary levels

having rotational sublevels.

4.1 The valid utilization of a product function basis

If the electronic functions calculated at each fixed point

were members of a set of functions with known explicit

dependence on q specifiable over the whole range of the

internal coordinate space, then it would be possible to

calculate all the derivatives required to evaluate the c
terms. If a single electronic state was considered, a set of

internal motion functions could be taken as the basis for a

secular problem defined, within any J manifold, by matrix

elements of the Hamiltonian defined by Eq. (22). The

resulting internal motion eigenfunctions could be com-

bined with the electronic functions and used as a basis for a

secular problem, again within any J manifold, defined by

the full Hamiltonian. This would result in variationally

exact solutions to the full problem. The results could then

be improved if necessary by means of the usual computa-

tional strategies.

In practice, this approach has not yet proved possible.

The best that can be done is to determine the internal

motion functions using a suitable potential and then to treat

the c terms as perturbations with the derivative terms

estimated as accurately as possible around the fixed points

at which the electronic functions are known. If the ordinary

clamped-nuclei Hamiltonian is to be used to determine this

potential, then since this can be mapped only onto the first

term in Eq. (7), consistency requires that the second term

in Eq. (7) should be treated as a perturbation and added to

the clamped nuclei result. In what follows VpðqÞ denotes

the clamped-nuclei result and vp denotes the addition.

If it were anticipated that a single electronic state and a

single value of k was going to provide an adequate

approximation for determining the internal nuclear motion,
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then it would seem appropriate to use as a potential the

effective form:

VpðqÞ þ vp þ
�h2

2
ðJðJ þ 1Þ � k2Þbþ b0k2
� �

ð23Þ

The extra terms in Eq. (23) arise from the purely product

terms in Eq. (22) and involve no derivatives with respect to

the internal variables. This can be compared with the

effective potential commonly used in diatomic calculations

namely

VpðqÞ þ vp þ
�h2

2lab

1

R2
JðJ þ 1Þ � 2k2
� �

The coefficients of the terms in J and k in Eq. (23)

depend on the choice of a particular body-fixed frame just as

they do for the diatomic Hamiltonian. In the case of three or

more nuclei, however, more than one choice of body-fixing

can be made and, as noted earlier, at least two choices must

be made if it is wished to cover all the Cartesian space R3A-3

formed by the translationally invariant coordinates. If it is

wished to investigate the spectrum up to the lowest

dissociation level of a polyatomic molecule, although the

so-called HVZ theorem (Theorem XIII.17 in [5]) provides a

secure theoretical basis for recognizing that level as the top

of the discrete spectrum of the operator, but, as discussed in

[4], it seldom provides a secure basis for identifying it in

advance except in the case of neutral atoms. Although the

continuous spectrum begins at the lowest dissociation level,

since this level is below zero (where zero is defined in the

standard spectral theory manner, as the energy of the

infinitely separated components, so only hydrogen-like

atoms dissociate at zero energy), then there will be resonant

states above the dissociation level which may well

contribute to the discrete spectrum. Thus, it is not known

in advance whether a particular state is accessible with the

chosen body-fixed coordinate system because the Jacobian

of the transformation may vanish in the coordinate domain

in which the required states can be described.

In the diatomic case, there are no such troubles because

with the choice illustrated earlier with lab the reduced

nuclear mass and R the bond length, and for the electronic

variables to carry the z component of internal angular

momentum, it is only at dissociation into atoms or ions that

uncertainties arise. For diatomic states of different k cor-

respond to different electronic states and thus, up to the

lowest dissociation level, the mixing of states of different

k will be very small in molecules composed of atoms in the

first two rows of the periodic table, (exhibited as so-called

lambda doubling), and it is sufficient to consider only the

single value of |k| that is determined by the clamped

nucleus electronic structure calculation when determining

the potential. So, though 2J ? 1 states of different k can be

associated with a given J, it is not usually necessary to

consider all of them and for any electronic state. For

homonuclear diatomic molecules, it is known that the

lowest dissociation level is at the energy of two neutral

atoms in their electronic ground states.

The role of k in the polyatomic case is, unfortunately,

much more involved. The form of the coupling terms in

Eq. (22) makes it clear that for any electronic state, any

given J state can have 2J ? 1 different k states coupled by

nuclear motion. So investigating states of high J is liable to

involve a very extensive domain of trial functions and to

make great care necessary to construct feasible computa-

tional schemes. It is therefore the case that, from the

present position, the potential must be regarded not only as

depending upon J but also upon the way in which angular

motion is realized in a given formulation.

However, k is defined for a particular J, and it is clear

that potential will become more and more shallow for any

given k as J increases. Precisely how important this is

depends upon the size of b which is indirectly related

through Eq. (11) to the inverse of the instantaneous inertia

tensor.

It is useful then to examine particular examples to

obtain some idea of how important the proposed modi-

fication of the potential to allow for the effects of rota-

tional motion is likely to prove. It is already known [6]

that for the hydrogen molecule dissociating into two

hydrogen atoms in their ground states, the J = 0 state

supports 14 vibrational states, the state J = 15, supports

10 and for J = 31, only 1. In fact, there are just 301

states that can be associated with the lowest electronic

state of the hydrogen molecule. So it is clear that here

the number of vibrational states possible is strongly

associated with the rotational state. Furthermore, the

energy levels are inter-twined. Thus, for example, in the

ground vibrational state, the rotational state with J = 9

has a higher energy than the J = 0 state has in the

second vibrational state.

This is, of course, not the usual way in which these

calculations are presented for, just as described earlier in

the polyatomic case, the rotational levels are shown as

sublevels of a vibrational state. Thus, the ground vibra-

tional state is associated with 31 rotational sublevels even

though the sublevel J = 9 has an energy above that of the

J = 0 level of first excited vibrational state.

Since the proton nuclear masses are the smallest nuclear

masses, it might be expected that the effects of rotational

motion would be most marked in the case of molecules

made up only of protons so it seems sensible to examine

what happens in H3
? a molecule involving only protons

and, with only two electrons, one on which very accurate

electronic structure calculations can be made.

Theor Chem Acc (2011) 130:187–195 191

123



5 The vibration–rotation spectrum of H3
1

It is known that the lowest dissociation products of H3
? are

H? and H2 in its ground electronic state so that the upper

limit of the discrete spectrum is known pretty accurately. It

is common in very accurate calculations of the vibration–

rotation states of H3
? use a formulation of the vibration–

rotation Hamiltonian developed in [7] for triatomic systems

generally. Because only two distinct translationally

invariant coordinates, call them t1 and t2 can be chosen,

this formulation is not able explicitly to support the full

nuclear permutational symmetry, but provided that the

electronic potential used is invariant under all the nuclear

permutations the full symmetry can be accommodated. In

this formulation, where the three nuclei define the x - z

plane with the y axis chosen to make the frame right

handed, Eq. (23) simplifies a little to

VpðqÞ þ vp þ
�h2

2
ððJðJ þ 1Þ � k2Þbþ b0k2Þ ð24Þ

with

b ¼ ðjxx þ jyyÞ=2; b0 ¼ jzz

If now a special choice of coordinate system is made so

that t1 is the vector joining two protons and t2 is chosen

with its origin at the center-of-mass of the proton pair and

pointing toward the remaining proton and the angular trial

functions are chosen to be associated Legendre

polynomials Hj;kðhÞ then even further simplification is

possible to yield

VpðqÞ þ vp þ
�h2

2l1r2
1

ððJðJ þ 1Þ � 2k2ÞÞ ð25Þ

where r1 is the length of the vector joining the two protons

and l1 is the reduced mass of the proton pair. This choice

results in a formulation of the Hamiltonian which is valid

even when the system becomes linear. It seems that the

molecule becomes linear at an excitation energy of about

12,000 cm-1 above its vibrational ground state which is at

about 2,394 cm-1. Its dissociation energy is at about

35,000 cm-1. The divergence at r1 = 0, though of theo-

retical consequence, is easily avoided by a suitable choice

of trial function.

It should be emphasized that the choice of the ti to be

bond-length vectors would give a very different forms for

b and b0 and that b, on integration over h, would give rise

to a term (see Sect. 4.3 of [7])

I
ð1Þ
j0;k0;j;k ¼\j0k0 j 1

ð1� cos hÞ j jk [

This term diverges logarithmically when k0 ¼ k ¼ 0 and

thus can result in a divergent term in the Hamiltonian for

states for which J [ 0, k = 0. The remark made earlier can

thus be seen to be a matter of consequence. The potential

depends not just upon J but upon the way in which the

angular motion is realized in a given formulation.

In the case of J = 0 in the chosen formulation, it is

estimated that there are 1,280 vibrational states below

dissociation [8]. It seems that 46 is the highest value of

J for which at least one vibrational state exists [9] but these

figures should be taken as indicative rather than definitive,

for the electronic structure calculations from which they

result, though among the best available, do not have quite

the accuracy that the calculations on H2 cited above do.

What information there is would seem to indicate that for

J = 11 and above there will be overlap between the rota-

tional states assigned to the lowest vibrational state and the

J = 0 states of the higher vibrational states, just like the

inter-twining that occurs in the hydrogen molecule case. As

can be seen from the upper limit for J = 0 states given

previously, many states exist at energies above which the

molecule becomes linear. A discussion of this can be found

in [10].

It has not yet proved possible to calculate all the

vibration–rotation states of H3
? at a highly accurate level

but an attempt has been made [11] to calculate the parti-

tion function using accurate energy levels for all states up

to 15,000 cm-1 above the ground state including all

rotational states up to J = 20 and using an extrapolation

scheme above these. The scheme assumed that J did not

exceed 46, as indicated in accurate calculations, and

modeled states up to the dissociation limit taken to be

35,000 cm-1. The treatment of the rotational levels in

their extrapolation scheme is based on the Eckart [12]

approach to the treatment of rotational motion which is the

most generally used formulation for considering nuclear

motion in molecules, and it is that approach to be con-

sidered next.

6 An analysis of the effect of rotational motion

on the potential in the Eckart formulation

This formulation of the vibration–rotational problem is the

one that forms the basis for the treatment of vibrations and

rotations as independent motions and so forms the basis for

what is usually done in calculating vibration–rotation par-

tition functions. The Eckart Hamiltonian for nuclear

motion was put into quantum mechanical form by Watson

[13] with the angular momentum operators obeying the

anomalous commutation conditions. For consistency with

what has gone before, a reformulation of Watson’s form

will be used, with angular momentum operators that obey

the standard commutation conditions. Details may be found

in [3], and it is sufficient to note here that ai is used to

denote the position of the i-th nucleus expressed in the

192 Theor Chem Acc (2011) 130:187–195
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Eckart frame and zi to denote its instantaneous position,

and the skew-symmetric matrix x̂i is

x̂i ¼
0 �xzi xyi

xzi 0 �xxi

�xyi xxi 0

0
@

1
A ð26Þ

where x denotes any of the coordinate variables.

The form of the potential in the Eckart case is slightly

different in form from the triatomic form Eq. (24) because

incorporation of the internal coordinate part of the Jacobian

into the trial wavefunction generates an extra term, the so-

called Watson term

� �h2

8

X

a

jaa

Here, the matrix j from which b and b0 are derived is:

j ¼ I00
�1

I0I00
�1

where I0 is the inertia tensor for the molecule at the

reference geometry

I0 ¼
XH

i¼1

miâ
T
i âi

and so is a constant matrix and

I00 ¼
XH

j¼1

mjẑ
nT
j âj ð27Þ

When the nuclear displacements from the equilibrium

geometry are small ones

j! I0�1

and the inertia tensor can be put into principal axis form

without loss of generality and yields the usual rotational

Hamiltonian

Hrot ¼ 1

2
jxxL

2
x þ jyyL

2
y þ jzzL

2
z

� �

When expressing the expectation value of the Hamiltonian

in this form, the terms arising from the 1/2ja a are usually

denoted A; B and C with A C B C C and refered to as the

rotational constants and quoted in cm-1. This Hamiltonian

forms the starting point for the discussion of microwave

spectra.

In the case of H3
?, the equilibrium geometry is that of an

oblate symmetric-top (A = B [ C) and the second part of

Eq. (24) is usually written as

hcðBJðJ þ 1Þ þ ðC � BÞk2Þ

If this form is used to interpret the experimental spectrum,

then, in cm�1; B ¼ 43:56 and C = 20.61 [11]. These are

quite small quantities and would lead only to a small

Watson term in the J = 0 state for vibrational states that

result in only a small departure from the equilibrium

geometry.

In the extrapolation scheme used in [11], the energies of

the upper states are estimated using a formula

En ¼ EnðJ ¼ 0Þ þ EgsðJ;KÞ

in which the last term on the right is a function of the

symmetric-top energy given above, determined by fitting

the rotational states up to J = 20 of the lowest vibrational

state.

However, the calculations discussed earlier show that

there are many vibrational states in the J = 0 state that

reach a linear geometry, and for these states, it is easy to

see that one of the moments of inertia vanishes and so

B and C increase without limit and the Watson term

becomes divergent.

It is thus not possible to justify, from a theoretical point

of view, the usual treatment of vibrational and rotational

motions in the calculation of partition functions for this

system because in the usual formulation, it is assumed that

any vibrational level can be achieved for any rotational

level, and this cannot be the case here, even for the J = 0

state.

Although extrapolation scheme outlined previously uses

the Eckart form of the symmetric-top rotational energy, it

is used merely as a fitting device and its form is chosen at

the start of the fitting and so any actual divergence is

irrelevant to its use. However, it might be thought that for

states that are substantially linear, a rigid rotor might form

a better model for extrapolation.

7 Conclusions

To put matters in perspective but still confining attention to

the bound eigenstates of the Coulomb Hamiltonian:

When calculating bound state energy for atoms all that

is necessary is to separate the translational motion of the

atom as a whole and then to express choose the internal

coordinates to be the spherical polar coordinates for each of

the electrons with the atomic nucleus as the origin. There is

no need to approximate the nuclear motion and so the

Born–Oppenheimer approximation is irrelevant in this

case, and there is only an electronic structure problem.

Approximate solutions may easily be chosen in a form in

which both the orbital and spin angular momentum are

definite without any approximation. However, the nuclear

mass can be allowed to increase without limit, so effec-

tively clamping the nucleus, while preserving a self-adjoint

Hamiltonian, and if this is done, the Hamiltonian is slightly

simplified to the one that is used most often in electronic

structure calculations. The difference between the energy
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levels as calculated with the two Hamiltonians is very

small. The problem is exactly soluble for the hydrogen

atom and for any hydrogen-like ion and, as has been seen,

using the exact energy levels leads to partition function

which diverges. Even though exact solutions cannot be

obtained for many electron atoms, it is demonstrable that

all neutral atoms or positively charged ions have an infinite

number of energy levels terminating at the first ionization

energy. The partition function for any of them will there-

fore diverge in exactly the same way as for the hydrogen

atom. There is no agreement about how this divergence

should be dealt with.

When calculating the bound state energy for a any

molecule once the translational motion has been sepa-

rated, there remains the problem of dealing with the

nuclear motion as well as the electronic motion and it is

here that the clamped-nuclei approach plays an important

part. There is no molecule for which exact eigenfunctions

are known but for the diatomic H2
? very accurate solu-

tions are known without using the clamped-nuclei

approach and similarly accurate solutions are known for

the hydrogen molecule in its lowest energy state. It has

not so far proved possible to calculate any other state of

the hydrogen molecule or of any state of any other

molecule without using the clamped-nuclei approach. The

Hamiltonian produced by clamping the nuclei is properly

self-adjoint and, if the molecule is neutral or positively

charged, has an infinite number of bound electronic states

just like an atom or positive ion. However, it is known

that the full problem has bound states only up to the

lowest energy state at which the eigenfunction corre-

sponds to the dissociation into two parts. In general, this

level is not known, but for H2
?, it is known to be H ? H?

and for the hydrogen molecule it is known to be two

hydrogen atoms both in their ground electronic state.

Unless both of the dissociated parts are oppositely

charged, the number of bound states can be shown to be

finite [14, 15]. The Born–Oppenheimer approximation

consists of choosing the clamped-nuclei electronic state in

terms of which the lower rotational and vibrational states

of the full problem can be most closely approximated. It

is thought that for most molecules, the lowest dissociation

level is into neutral parts and so it is anticipated that only

a finite number of bound states need to be considered in

calculating the partition function. It has been seen that for

the hydrogen molecule in the clamped-nuclei approach

that the Born–Oppenheimer approximation leads to an

excellent separation between electronic and nuclear

motion and that only one electronic state lies below the

first dissociation level. However, the potential in which

vibrational nuclear motion occurs is strongly dependent

upon the rotational state of the molecule and so the Born–

Oppenheimer approximation is not applicable here in its

usual form in which the rotations and vibrations are

treated independently. A detailed analysis of this case has

already been presented.

In the present work, the polyatomic case in which the

most accurate calculations are possible has been consid-

ered. The Born–Oppenheimer approximation for the sep-

aration of electronic and nuclear motion has once more,

seemed to be a good one but, again, the separation of

rotational and vibrational motion does not seem justified,

because the potential for nuclear vibrational motion has

been shown to depend strongly on the rotational motion of

the molecule. The precise form of this dependence has

been shown to depend upon the way in which the rotating

axes are fixed in the molecule, and it is thus much less

clear than in the diatomic case, how this failure to separate

ought to be handled. There is an additional complication

in polyatomic systems because all 2J ? 1 states of dif-

ferent k can be achieved within a given electronic poten-

tial, so that the variational problem in any approximate

calculation of vibrational motion grows rapidly in size

with increasing J.

The molecules that have been considered in the work

reported for this project are ‘‘worst cases’’ in the sense that

they have the smallest possible nuclear masses and thus

will give rise to kinetic energy operators which are the

closest possible to the electronic ones and thus will lead to

the greatest possible interaction between the electronic and

nuclear motions. What has been shown, however, is that

even in such cases, calculations using the clamped nuclei

approach can lead to potentials in which nuclear motion

can be effectively calculated if the rotational and vibra-

tional motions are treated as coupled.
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